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Interfacial mixing in heteroepitaxial growth
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We investigate the growth of a film of some elemé&bn a substrate made of another substafidée a
model of molecular beam epitaxy. A vertical exchange mechaqmrtial surfactant behavipallows theA
atoms to stay on the growing surface with a certain probability. Using kinetic Monte Carlo simulations as well
as scaling arguments, the incorporation of e into the growingB layer is investigated. Moreover, we
develop a rate equation theory for this process. The concentratidnirapurities decays in th8-film like
(distance from the interfage *, where 8~0.5 for two-dimensional surfacesz0.8 in the one-dimensional
case, and 1 in mean-field approximation. The power law is cut off exponentially at a characteristic thickness of
the interdiffusion zone that depends on the rate of exchangeBadidatom with arA atom in the surface and
on the diffusion length. Under certain conditions the interdiffusion zone is predicted to become narrower, if the
growth temperature is increased.
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I. INTRODUCTION This surfactant-like behavior depends on the interaction
between the different atoms including magnetic contributions
Heterolayers, where, e.g., ferromagnets are in contad@nd lattice mismatch. In particular the explanation of any
with antiferromagnets, semiconductors or superconductorgrdering ofA and B atoms close to the interface would re-
give rise to ordering and transport phenomena, which deperfduire a detailed investigation of these interactiphg]. The
crucially on the interfacial structure. Examples for such or-Situation becomes considerably simpler, however, if one is
dering phenomena are the exchange idsor the crypto- interested in the physical properties further away from the
magnetisn{2]. Electronic transport through a ferromagnetic- intérface. Then the concentration &f atoms may be re-
nonmagnetic-ferromagnetic  sandwich(“spin  valve” garded as sufficiently Io_w that their interaction as vyeIIAas_
geometry gives rise to the giant magnetoresistarjéed. B Ordering become unimportant. The focus on this region
Another example is the recently predicted possibility to er1Justn‘|es our simplified model in which the surfactant-like

hance or reduce a Josephson current magnetically by repla ehavior ofA atoms is described by a constant rélavith

ing the tunnel barrier of a Josephson junction by athhlch aB adatom exchanges irreversibly with Aratom in

o . ! e crystal layer below. This means tHatatoms are more
ferromagnet|c—|nsulanng—ferromagnetlp sandw[(‘_il]m. These strongly bound in & environment thar atoms, which get
phenomena belong to the growing field of spintroni6§ oy nhelied onto the free surface iffaatom is available to take
where the spin degree of freedom is used for electronic siggejr place.

nal processing. Interfacial mixing affects all of th¢#). For Apart from the exchange there is a second crucial ingre-
example, it leads to spin scattering disturbing the spin depentient in the model: TheA atoms behave onlpartially as a
dent transport properties. surfactant in the sense that they can be overgrown by island

Therefore, it is important to be able to control the variousedges. By contrast a perfect surfactant atom should float up
physical processes that may spoil sharp interfaces. Some @fso in front of an advancing island edge.
them proceed after growth such as bulk interdiffusion or Further phenomenological parameters characterizing the
chemical interface reactions like silicide formation. How- model are the deposition rafeof B atoms and the diffusion
ever, diffuse interfaces may also be caused by processes tatonstantdD, and Dg of the adatoms of typé or B, respec-
ing place exclusively at the surface: For example, the subtively. The limit E/Dg— «, where aB adatom exchanges
strate may partially behave like a surfactant when one growsith the firstA atom it encounters, would be realized if tBe
a different material on it. It is this latter mechanism which adatoms diffuse by an exchange mechar{i$8} while theA
we investigate in this paper. The questions we want to anadatoms diffuse by hopping.
swer concern the asymptotic concentration profile, the width In the present paper we make two assumptions which are
of the interdiffusion zone and possible correlations amongyenerally not fulfilled and can affect the physical behavior
the substrate impurities within the growing layer. substantially. What will change if these model restrictions
Specifically we consider growing some materfgalon a  are relaxed, will be discussed in Sec. IX. The first simplifi-
substrateA. Obviously interfacial mixing requires that some cation is that both kinds of atoms diffuse equally fast on the
substratg/A) atoms get replaced b atoms and “float up”  surface,D,=Dg=D, with a diffusion constant independent
on the surface until they get incorporated into the growingof the surface composition. The second simplification is that
film. Often the rate for the reverse process is so small that iEhrlich-Schwoebel barriers are not taken into account: Dif-
can be neglected. Such a behavior occurs, e.g., for Cr on Hasion on a terrace and across a terrace edge are described by
[8], AlAs on GaAs[9], Nb on Fe[10], and Au on Fd11]. the same diffusion constal. This turns out to be justified
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for weak enough Ehrlich-Schwoebel barriers. We make these B
assumptions because we want the nucleation of islands on |:|
the surface to be goverened by a single diffusion length. TE
Crossover phenomena to be expected if there are other com- b
peting length scales would make a quantitative investigation b
of interfacial mixing much more difficult so that it is legiti- ] Dlil%j N =
mate to consider this limiting case first. ..............D..

Naively one would expect an exponential decay of the
der}Sity profile Of.A gtomg far. from the .int.erface. Itis the FIG. 1. The growth modeB atoms are deposited with a depo-
main result_ of this |nyestlgat|0n th_at this is not alwa_yg thesition rateF onto the substrate. Adatoms diffuse on the surface and
case. The incorporation dk atoms is much §Iower, 9VING  gown to the binding site at an island edge with diffusion consant
rise to a power law decay of the concentration profile in theegpective of their type. In the top layer mobBés can exchange
limit of perfect layer-by-layer growthD/F — . In this case \ith A's with an effective exchange rate
the width of the interdiffusion zone diverges, provided there
are no finite size effects. By contrast we shall show that for (6) When two adatoms, regardless of their type, meet,
finite D/F the width of the interdiffusion zone is no longer they form a stable immobile nucleation center of an island.
infinite, but a power law oD/F. () When an adator_n,_re_gardles_s of its type, reachgs a site

This paper is organized as follows. In the next section W(__a_djacent to an island, it is irreversibly bound, increasing the
are going to define a simple solid-on-solOS model for ~ Size of the island. , ,
epitaxial growth of &8 layer on anA substrate, which allows  (8) Both types of particles can diffuse down across ter-
for the irreversible exchange & atoms withA's at the sur- race edges without being hindered by an Ehrlich-Schwoebel

face. In this model thed atoms on the surface turn out to barger:rhere are no overhanas. i.e.. we assume SOS arowth
cluster in a time-periodic self-organized way, which is ex- El%)) The exchanade of & gtc;rﬁ .\,/vith anA atom undgr- '
plained in Sec. Ill. The next three sections, Secs. IV-VI, are g !

S I ath is forbidden, if th®&-atom is already part of an island,
devoted to the limit of perfect layer-by-layer growt/F i.e., if it has a nearest neighbor at the sgrr?e height. Hexce
— o, First, in Sec. IV, we present a simple mean field argu-, . ’

. L Y “atoms can be overgrown by island edges.
ment leading to the prediction, that the concentratiodsf Rules (4)~(7) violate detailed balance. Irreversible bind-
decays algebraically in thB layer. For a finite system size j,q and the absence of reincorporation of an expeNedom
this power law is cut off leading to a finite widtH of the  jnto the B surface underneath are justified, if the dissociation
interdiffusion zone, which is discussed in Sec. V, where als@nd reincorporation rates are so small that these processes
a scaling ansatz for the surface concentratigrs proposed. hardly ever happen within the layer completion tinte,
This scaling ansatz is confirmed by simulation results for=1/Fa2 This is the time, during which the film grows by
one- and two-dimensional surfaces in Sec. VI. The remainingne monolayer. The dynamics of buried atoms is usually
sections deal with interdiffusion for finitB/F. Section VIl much slower than that of surface atoms and is not considered
contains simulation results and scaling arguments, and iRere. In this sense, the system never approaches thermal
Sec. VIl a rate equation theory is developed for the interdif-equilibrium, as long as the deposition raka? is large
fusion problem. Possible refinements of our model are disenough compared to the rates we neglect.
cussed in the conclusion, Sec. IX. In the Appendix we de- Measuring time in units of the monolayer completion time
scribe a very efficient implementation of the simulationt_ one can identify the average film thickng$ise B dose in
model for one-dimensional surfaces in the liDitF — oo. monolayer$ with the deposition time. Choosing in addition
the lattice constara as length unit, this model is controlled
by the two dimensionless parameteld/Fa* and rg

In order to study interfacial mixing in heteroepitaxial =a’E/D. (In the following we sea=1.)
growth of aB layer on anA substrate we introduce a simple ~ This model will be investigated for one- and two-
SOS model defined on a simple cubic lattice by the follow-dimensionald=1 andd=2) surfaces in the following. Note
ing kinetic rules(cf. Fig. 1). that it reduces to the usual model for molecular beam epitaxy

(1) Starting from an initially flat substrate consistingdf growth (for a recent review see, e.g., Rgt4]), if one does
atoms,B atoms are deposited at randomly selected sites onot distinguish the two particle types. Therefore, DéF

E D

Il. THE MODEL

the surface with deposition rate dependence of quantities like island density, adatom density,
(2) As long as they do not have a lateral neighbor, Bhe surface roughness, etc., are the same as usual. For general
atoms diffuse on the surface with diffusion constint values ofD/F andE/D we use kinetic Monte Carlo simula-

(3) When such & atom happens to sit on top of aha  tions[15,14 in order to investigate the model. However, for
atom, it can exchange vertically with rakeor continue to  one-dimensional surfaces in the linit/F —c we imple-
diffuse with rateD. mented a much more efficient algorithm, which is described

(4) After an exchange, thé8 atom stays irreversibly in the Appendix.
bound, whereas tha atom diffuses on the surface with dif-
fusion constanD.

(5) There isno back exchange, when & atom sits on One of the most intriguing qualitative properties of this
top of aB atom. model is the time-periodic self-organization Afclusters on

Ill. CORRELATIONS OF THE A ATOMS
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FIG. 3. LateralA-A correlation functiong(r,t) att=1 for dif-
ferentD/F (d=1). The average distance betwegrtlusters scales
with D/F like the distance of the nucleation sites, KE#), where

v=1/4 ford=1.
1Y
glr,t) = FE NACX, DNAX +T,1) = CaD)?, (2)
x=1

wheren,(x)=1 if there is anA atom at surface sit&, and
na(x)=0 if there is nonec,(t) denotes the surface density of
A atoms. A data collapse of these correlation functions for
different values oD/F is obtained, if the space coordinates
are rescaled by (see Fig. 3 ford=1), which shows that
this is the characteristic distance between Aheusters.

The mechanism of the periodic self organization can most
clearly be seen in the limitg=E/D—<, where everyB
adatom exchanges with the first exchange partoér en-
counters. When laydris completed and laydr+-1 begins to
grow, the firstB atoms deposited are likely to exchange with
A atoms from layet. Hence, the nuclei of islands in the new
layert+1 will consist predominantly oA atoms. As growth
proceeds, the lower terrackayer t) gets depleted from ex-
change partnerg, either because they are exchanged with
freshly deposited® adatoms or get overgrown by the islands.

FIG. 2. Top view on the surface structuretat3.3 ML (a) and  Then the core of the islands with a high concentratiomof
t=4.0 ML (b). A atoms are blackB atoms are height encoded, atoms gets surrounded by mairyatoms[Fig. 2@)]. How-
where brighter means highd»/F=10", E/D=10% L?=100x 100.  ever, as the island size increases, it becomes more and more

likely that B atoms are deposited on top of the islands, i.e., in
the growing surface with a period of one monolayer. Figure dayert+2. TheseB adatoms find many exchange partners at
shows that thed atoms(black) are first clustered around the the core of the islands, which then become “washed out” and
nucleation sites of a new layer, but migrate towards the holestart decorating the island edges, because there are no
remaining in that layer, when the islands coalesce. Thus, thehrlich-Schwoebel barriers in our model. Note that this edge
characteristic distance between these clusters agrees with tdecoration with A atoms happewmsthout lateral exchangef
typical distance between the nucleation sites, the diffusiod3 with A atoms at the edges of the islands, in contrast to the
length[17]: situation studied in Ref.18]. As a result, the interior of the
islands gets cleared frok atoms, which are collected in the
holes of layert+1 which get filled las{Fig. 2(b)]. Then the
process starts again: Layer2 nucleates predominantly with
A atoms which were exchanged from layerl.
as long as layer-by-layer growth persits. This can be verified For finite rg the mechanism is similar. However, for vici-
by examining the lateral correlations Afatoms on the sur- nal surfaces growing in step flow mode, the correlations
face after deposition of monolayers among theA atoms are different. Here, the terraces get

{p ~ (DIF), 1
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cleared ofA atoms, which attach to the step edges. This Inserting Eq(5) into Eq.(3) leads to the difference equa-
decoration of advancing edges leads to a correlation pattertion
r,t) with a spatial periodicity identical to the width of the
gr.1) vt & spatial periodicity Calt+ 1) = Calt) o = Co(1)? ®)
The clustering ofA atoms on the surface leads to correla-implying the asymptotic power law
tions among theA atoms which get overgrown and hence
incorporated as impurities into th# film. For vicinal sur- cat) ~ 11t (7
faces growing in step flow mode these corr_elations are mucky; the concentration oA atoms at the surface.
weaker than for layer-by-layer growth on singular surfaces.  a¢ time t the concentration of\ atomsnot transported
further into layert+1 is ca(t) —ca(t+1). This is the concen-
tration of A impurities incorporated into thB film at a dis-
IV. THE SCALE FREE LIMIT tancez=at/tz from the substrate. As explained earlier we
take a andtg as units of length and time so thatcan be
didentified witht. Hence, the concentration profile of impurity
Atoms inside the grown film is given by

The limit of perfect layer-by-layer growttD/F —«, is
particularly instructive. In this case, there is only one islan
on the surface, nucleating at a random site. Afterwards
most one adatom can be found on the surface at a time. If we — Cl(t) = Ca(t) = Calt + 1) ~ 112, (8)
assume maximal exchange in addition, i.e., an exchange rate
E much larger than bot® andF, re=E/D —, the model  This implies that the average distance of impurity atoms
becomes parameter-fre&.atoms can be buried even in this from the substrate diverges logarithmically with the thick-
limit, when they are overgrown by an island edge. Howevernesstyay of the film
the lastA atom will never get buried in this case. The nucleus

tmax1
of a new layer will always contain at least one of the remain- _ /
. . Lo z)=- CA(Dt + Caltmatmax~ N thax: 9
ing surface atoms of typ& in the limit we focus on, because @ Zl ADT+ Caltmad tmax mex ©

the first B atom deposited after completion of a layer ex- ) ) ]
changes with ar\ atom before the nex8 atom gets depos- Nevertheless, the interface can be localized precisely, be-
ited: co(t—o0)=L79. As this case is scale free, we expect thatc@useB atoms do not occur below layé~0 due to the
the concentration of atoms falls off like a power law into absence of bulk diffusion in this model. Later we show that

the growingB film. these power laws are confirmed by simulations.

In order to get a first idea about the distribution Af The argument leading to E¢p) ignores that thé\ atoms
atoms in the growingg film, it suffices to consider the con- &t the surface are clustered, as shown in Fig. 2, and was
centrationc,(t) of A atoms at the surface after the depositionMade plausible only for a one-dimensional surface. However,

of integer numbers 6f monolayers. During the growth of the it can be refined such that it takes these spacial correlations
next layer, a certain fractiofL—q) € [0,1) of theseA atoms into account and applies also for two-dimensional surfaces.

is transported to the next layer via vertical exchange For.D/FHOC;, we can imagine that there is only one cluster
of sizec,(t)L® on the surface, when the new layer nucleates.

calt+1)=(1—qg)calt). (3) The important point is that the nucleation happens anywhere

If q was constant, this would imply an exponential decayon the surface with equal probability 19 in this case. How-

¢ . Jever, only if the nucleation site is within an area of about the
Ca(t)=(1-q)". In the present model, however, the probability ;. Zlca(t)LY centered at the middle of the cluster, there is a
g that anA atom gets overgrqwn.decreases with decreasln%hance that som@& atoms get overgrown. In other words,
Call), re_sulltmg na decay which is slovyer than exponentlal.only a fraction of nucleation sitesica(t) leads to over-
Qualitatively this can be understood in the following way: growth. The average number Afatoms overgrown in such a
In the limit D/F — o there is only one island on the surface. §

Moreover. anvA atom on the lower terr ts transferr dcase is proportional to the cluster size. Hence, on average a
oreover, anyA atom on tne lower lerrace gels ransierre fraction g of A atoms is overgrown which is proportional to
to the new layer as soon as it is reached by an adatom of ty

; TYRRe fraction of nucleation sites leading to overgrowth, i.e.
B, becausaz— = is assumed, as well. Onlik atoms suffi- g g ' '

ciently close to the island have a chance to be overgrown bglhls refined argument give<ca(t) as in Eq.(5).
the island edge before being visited bBatom.

The island edge advances a characteristic distépgg, V. THE WIDTH OF THE INTERDIEEUSION ZONE
while the lower terrace gets depleted frédnatoms by ex- FOR D/F — o
change with adatoms of tyd®. For a one-dimensional sur-
face of lengthL it is clear that€ g, iS proportional to the In the previous section we predicted that the mean dis-

number ofA atoms at the surface,(t)L. Hence, the number tance of impurity atoms from the substrate diverges in the

of A atoms with a chance to be overgrown is of the order ofscale free limit, wherd/F—o andrg— . In this section
we show that for finite'g the power law Eq(7) is only valid,

Coovealt) = Ca(t)L. (4 if the system is infinitely large. For finite system size the

This must be compared wittc,(t)L, which shows that power law is exponentially cut off at a characteristic distance
H from the substrate. Above this height the remaining impu-

g o ca(t). (5) rity atoms die out quickly by being incorporated into the
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growing B film. Therefore, one can caHll the width of the 10" F=
interdiffusion zonelt could be defined as the limit— o of o olg
0 1/n , F
(ZHn= [_ > C’A(t)t“:| ~ H1-th, 1 L, ¢
t=1 = - Sk
2 E _ _ e
_ ) ) . & E ® L=8192 E/D=0.1 N
The average distance of impurity atoms from the substrate is 7 1o’ = L=1024 E/D=0.1 R,
given by(z)~In H instead of Eq(9). ~ | =8k E%:g-%
Now we derive the size ang dependence dfi. After the n = O L=4096 E/D=100
completion of several monolayers on a substrate of linear &* |52k o =400 ED=a 01
sizeL the number of substrate atoms at the surfaceig. E A L=4096 E/D=0.001
The A atoms are concentrated in a cluster, which we assume X L=4096 E/D=0.0001
to be compact, hence, ofdiamebem}\’dL. This assumption is ! T TN B R
justified even ford=2, where the islands initially are fractal, 10 10” 107 10” 10°
because thé cluster occupies the sites which were filladt t/L (E/D) %
in the uppermost monolayer. These sites do not form a frac-
tal. FIG. 4. Scaling ofca(t) with L andE/D in d=1 for D/F—oc.

Now we imagine the surface to be coarse grained on thEull symbols mark four curves foE/D=0.1 andL between 256
scale of the cluster diameter so that exactly one cell containdd 8192. Open symbols mark five curves kor4096 andE/D

the A cluster. The typical residence time of an adatom inbetween 10* and 100. A data collapse of all nine curves is reached
such a cell is by scaling in accordance with Eqél4) and (13). The data for

E/D=100 were rescaled differently: Herg,L -1 is plotted v4/L,
(c}f\/dL)z as if E/D was 1 instead of 100. This shows, th&tbecomes inde-
=——. (11 pendent o/D for E/D>1 as explained after E¢L3). The dashed
D line has slope -1 in agreement with E45).

At

A B adatom which enters the cell containing theluster
will almost certainly be replaced by an exchange parter VI. NUMERICAL RESULTS FOR D/F—

within the residence time, if o
In order to check the predictions of Secs. IV and V, we

EAt=rg(ciL)?> 1 (12)  simulated the model described in Sec. Il O/F —< and
varied the values ofg and system sizé for one- and two-
(exchange dominatgsFor EAt<1 the adatom changes from dimensional surfaces. For the casel we used the algo-
type B into type A only with probability EAt (overgrowth  rithm described in the Appendix, while kinetic Monte-Carlo
dominates simulations were done fat=2.

It is plausible to assume that the power law belongs to the Figure 4(for d=1) and Figs. 5 and 6for d=2) show the
exchange dominated slow decayaafwhile the exponential concentratiorc, of A atoms at the surface as a function of
cut off indicates the much faster decay when overgrowthdeposition timet (in monolayers oB atoms. All curves are
dominates. Thus, the widthi of the interdiffusion zone averages over 200—400 independent runs. Botllfat and
should be reached, whenp becomes so small that exchange d=2 the exponent of the power law decay was found to be
is no longer guaranteed, i.e., wh&t drops below 1. In-
sertingca=1/t=1/H into Eq.(12) one obtains

H~ (\rel)d. (13

However, asc, cannot become smaller thdnd, this esti-
mate is only valid forg<1, whileH=LYfor rg>1. This is n
our prediction for the width of the interdiffusion zone in the ~
limit D/F — <. Note that in this limit the cut off of the power
law is a finite size effect: Fdr — oo the power law extends to
infinity.

Based on the results of this and the previous paragraph wt
can conjecture the following scaling form for the surface
concentration ofA’s:

) Tg

(c,(® - UL

10_ 0 I II“ml I ‘“““2 I .‘Hm3 ‘ II‘““4
1./t 10 10 10 10 10
CA(t,L,rE) - CA(t — OO) - ﬁf(ﬁ) y (14) t/rEI.Z
where according to Eq7): FIG. 5. Scaling ofca(t) with re=E/D in d=2 for D/F —c.
L2=200% 200. Dashed line has slope -1 in agreement with Eq.

f(r)~1r for 7<1. (15  (@5).
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10°E 3
10°F 4
. [ ]
= 10°F 5
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E A L=200 3
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10" 10° 107
t/Ll.93

FIG. 6. Scaling ofca(t) with L in d=2 for D/F—o. E/D
=0.1. Dashed line has slope -1 in agreement with (E).

consistent with the value —1 derived in Sec. IV.
As shown in Fig. 4, the predicted relations E¢s3) and

(14) lead to the expected data collapse for the one dimen-

sional surface. The results in two dimensions are not as cle
In this case, we obtain the best data collapse with

H o L1.93 r:lé.Z,

nents[2 and 1, respectively, see H3d.3)] were about 4% and
20% different. In fact, theA clusters are not as compact as
assumed in the simple argument of Seqsée Fig. 2.

VII. SCALING FOR FINITE D/F

For finite D/F there are manw clusters on the surface.
Their typical distance is given by the diffusion length as
shown in Sec. Ill. The average size of tAelusters iscald,
provided this is much larger than 1. If the concentratign
becomes too small, less and lésslusters will be found on
the surface, and their typical distance will grow. FinallyAll
atoms will be overgrown, in contrast to the situation of per-
fect layer-by-layer growth, where the lasatom could never

be overgrown. Apart from this, one might expect that the
results of the previous three sections would essentially re-

main true, if one replaces by €. Qualitatively, the surface
concentrationc, indeed decays first approximately as a
power law of the deposition time, with a cutoff at a charac-
teristic widthH of the interdiffusion zone.

Quantitatively, however, the situation turns out to be more
complex than this: All exponents are different. The power

law decay

cpoxt™? (17)

extends over at most two decades for the largest values o

PHYSICAL REVIEW E 70, 021604(2004
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FIG. 7. Scaling ofca(t) with D/F in d=1. E/D=10% L=5
X 10%...10" The dashed line indicates the expongat0.78.

|

hich are indicated by the dashed lines in the two figures.
Joth exponents are significantly smaller thér 1 obtained
for infinite D/F, i.e., c, decays more slowly for finite than
for infinite D/F.

This result is surprising on first sight, because there are
more island edges on the surface for firlitéF, hence, more

0.78+0.08 for d=1,
0.53+0.05 for d=2,

(18

Possible places, wherk atoms may be overgrown. Tha

decays more slowly nevertheless, may be explained by the
fact, that the nucleation of islands does not happen anywhere
with equal probability as for infinitd/F but preferentially
far away from the holes in the previous layer, where ghe
atoms are concentrated. Therefore, overgrowth is less likely,
andc, decays more slowly than for infinite/F.

This raises the question, how big the paramBtéf must
be in order to see the exponeft1 instead of the smaller
one. The answer is, that the system sizenust be small
compared t in order to obtain the crossover to the faster
decay ofc,. This was confirmed by simulation results in Ref.

10*

v r o %
2 10 o ppeat 0 Wy
CA =
o o .
e T E
o< o
E ] 1
10-4' ¢ A
A
765 L ol Lol L aaanal Ll N ?
10°5 - - - - -
10° 107 10* 107 10” 10"
0.6
t/ (D/F)

D/F we simulated, so that the determination of the exponent

B from the slopes in the log-log plots of Fig.(@=1) and
Fig. 8 (d=2) is not very accurate. We estimate

FIG. 8. Scaling ofc,(t) with D/F in d=2. E/D=10% L?=500
X 500. The dashed line indicates the expongn0.53.

021604-6



INTERFACIAL MIXING IN HETEROEPITAXIAL GROWTH

[19]. In the four figures belonging to this section we care-
fully checked that the system sizes were big enough to ex-

clude finite size effects.

Because the impurity concentration falls off more slowly

for finite D/F, Eq. (10) is replaced by

© 1n
CORE [— > c,;(t)t“] ~ RN, (19
t=1

The limit n— oo can still be used as a definition of the width
H of the interdiffusion zone. The average distance of the

impurities from the substrate is now

(2) ~ HY2. (20)

In analogy to Eq(12) we expect that the power law decay

of cpxt™? stops, when
re(cal®)?@~1, (21)
or
calh =1, (22

whichever happens first. Replacig by H™, this implies

that the widthH of the interdiffusion zone should be given

by
H=~ (Y% for rg>1 (23)
and
H~ (relp)¥® for re<1. (24)
In analogy to Eq(14) we postulate then that
wilt)
with
g(n) ~ 17 for <1, (26)

because, is independent oH for smallt.

We first checked these conjectures fae>1, where the
surface concentration d%'s becomes independent of, as
expected. If we insert th®/F-dependence Eql) of the
diffusion length in Eq.(23), Eq. (25) can be written in the

T )

With y=1/4[20] for d=1 andy=1/(4+d;) =0.17 ford=2
(d; is the fractal dimension of the island®1], and with the
B values determined earlier, the theory predicts

) {0.25 for d=1

(27)

28

0.35+0.01 for d=2, 28

]0.32£0.03 for d=1 29
yd/B= 0.66+0.07 for d=2.

The data collapses in Figs. 7 and 8 are in reasonable agree- FIG. 10.

ment with this prediction.
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FIG. 9. Scaling ofca(t) with E/D in d=1. D/F=10/, L=5
X 108,

However, therg-dependence Eq24) for re<<1 is not in
agreement with the simulation results. For fixBdF the
theory Eq.(25) predicts

card? = gy(t r 9%, (30)
Inserting the value oB determined earlier, the scaling expo-
nent should be

0.64+0.06 for d=1

1
1.9+0.2 for d=2. (39

d/28= {

For D/F=10" we could only check this for about one decade
of rg values: Ford=1 we found that already farz=0.3 the
crossover into the regime, whelkebecomes independent of
re, affects the data. Far-< 1073 the exchange was so weak
that the surface concentration Ak decayed very fast from
the beginning, so that a convincing data collapse was not
possible. Similar problems occurred fi=2. The best result

of our attempts to get a data collapse in the availakle
interval are shown in Fig. 9 fod=1 and Fig. 10 ford=2.

Scaling ofca(t) with E/D in d=2. D/F=10, L?
=500x% 500.
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The effective exponents turn out to be very different from thetions of these equations for a flat surface aftedeposited
ones predicted in Eq30). monolayers are

p(0)=1(0)=pa(0) =0, pA(0) =Ea(N). (40)

Disregarding the point island model nature of this ap-
In this section we extend the established rate equatioproach, which only holds for early stages of the submono-

approach for submonolayer homoepitaxial growth as delayer regime, we can establish the surface concentration of

scribed in Refs[22] and[23], in order to apply it to our A’'s after the deposition of one additional monolayex(n

model for surface interdiffusion. Our approach describes the-1), as the integral over the density of all exchanged atoms

time evolution of four submonolayer quantities: The density (62

of mobile adatoms, the total island density, the density of Ea(n+1)= f dtrepape. (41)

mobile adatoms of typ®, pg, and the density of potential 0

exchange partners of typ& in the lower layer,p,. With

these quantities, the rate equations are as follows:

VIIl. RATE EQUATION APPROACH

The upper integration boundary is the dimensionless time for
depositing one monolayer. This approximation can be justi-
p=F-Dp(l +2p), (32) fied by taking into account that the transport®oitoms from

the nth to the (n+1)th layer mainly takes place at early
times, that is, the nucleation regime and early stages of the

|=Dp?, (33) intermediate coverage regime, as explained in Sec. Ill. The
) chosen approach describes these regimes with sufficient ac-
pg=F = Dpg(l + p+ pg) — E&ppps, (34 curacy.
The solution of the first two equations can be taken di-
pa=—Ea®pppg — pad®Dp(l + 2p). (35 rectly from the literaturg[23]: For early timesi<1, p is

While the first two equations are identical to the well linear int, andl increases witt®. At late times,t>1, one
known point-island model rate equations for homoepitaxialgetsp=t-%/® and | «< /3,
growth, the last two are specific to our heteroepitaxial model. With these results, the last two equations can be solved
The third one expresses the change in density oBtgpe  analytically in a similar way for the early-time regime,
adatoms. Its positive contribution describes the deposition o& 1. For Eq.(38), the second term on the right hand side can
new adatoms. The first negative term represents the |oBs of be neglected in this limit. If we also neglect the time depen-
adatoms, when they get incorporated into islands or bind talence ofpa(t) = pa(0)=Ca(n), we get
another adatom to nucleate a new island. The extra Bysfn _
accounts for the fact that nucleation events involving 8vo pg =~ 1 —TeCaps. (42)
adatoms count twice as much as those betweRrmiad anA
adatom, because they remove t@adatoms simultaneously. A N A
The last term of Eq(g4) describes the exchange of mob)ille *L/(rela) afte.r a AChiraCte“St'C timé ~1/[reCa(n)]. Fo-r
B's with A's. Equation(35) expresses the annihilation of pos- V€N smaller times,<t', we can also neglect the other right
sible A-type exchange partners in the lower layer. Since thid1and side term, and we gggot. o
value is monotonously decreasing, there is no positive con- P1ugging these results into E@9), and realizing that the
tribution. The negative terms describe the exchanga'sf Sécond term on the right hand side can be neglected com-
with mobile B's, and the overgrowth of’s due to propagat- Pared to the first one, we get

This equation relaxes into a steady state wif.

ing island edges and nucleation events. . i L
Rescaling the variablegsee Ref.[22]) according tot pacc e lon~ 1_6_ for t <t<1 (43)
=tF€3, p=pl, 1=105, pa=pals, pPe=psls, Where (g .
=(D/F)Y4, leads to the dimensionless equations and
~ _ 52 A ~ A~k
5=1-p(1+2p), (36) pax €E = (1 -rgt?) for <t (44)

To relate these findings to our results in the other sections,
we employed an iteration scheme for the rate equation sys-
tem to obtain the surface concentrationA for every de-

. . posited integer monolayer. Starting from the substrate
pe=1-pg(l +p+ pg) — rePaPs, (38)  [pa(0)=ca(0)=1] we can obtairpa(1)=ca(1) from Eq. (41)

by solving Egs.(36)—(39) numerically. Plugging:a(1) back
Lo “ - on A aa into our rate equations as the initial surface concentration,
Pa=~Tepapg ~ (@llo)pap(l +2p). B9 thatis pA(O)=CA(?l), we getpa(1)=ca(2) by using Eq.(41)

If we consider systems in perfect layer-by-layer growthagain. Repeating this iteration scheme leads,ft).
mode, this approach not only holds for the submonolayer The rescaled results of this approach for diffefef are
regime starting from the substrate, but also starting after inshown in Fig. 11. One can clearly observe power law decay
teger numbers of deposited monolayers. The initial condifor high D/F values at intermediate times, and a similar

=52, (37
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10" 10 the width of the interdiffusion zone should be approxi-
3 mately proportional to
E\12/p)\06
(52
F ] D F
o ‘ providedE/D <1. The exchange and diffusion rates should
~ 10 ; 1 follow Arrhenius laws with activation energids: and Ep,
< E D/F=10 E . .
© 10'F - DF=10° R respectively, and attempt frequencigsand v, assumed to
2 D/F; 0 be independent of temperature, i.e.:
10°F o oy 10 3
G VS E= e exp(— E) D=up exp<— 5) (46)
10 %' \,\ E kBT kBT
Al el e ]
10 10° 107 10" 10° 10! so that
2 2 0.6
t/1 2E--E
¢ Hoc<£exp[——E DD . (47)
VDF kBT

FIG. 11. Scaled time dependence of the surface concentration of
substrate atoms, obtained from the iteration of the rate equationdhe interesting case is that the activation energy for the ex-
The slope of the power law region is -1.03+0.G8D=1. change of &8 adatom with arA atom underneath is smaller

than the activation energy for surface diffusiorEg2 Ep,

scaling behavior as obtained from the simulations. The exand at the same time the attempt frequency for exchange is
ponent of the power law behavior is approximately —1,smaller than the one ford|ffl_JS|on, too. Then there is a rever-
which is identical to the result from the simulations for per- Sal temperaturd, up to which the width of the interdiffu-
fect layer-by-layer growth mode)/F —c. This fact sup- Sion zone increases, and above which it becomes smaller
ports our argumentation concerning the different exponentd9ain.Trey is given by
for D/F — and finiteD/F in Sec. VII: Since the rate equa- Ep - Ee
tions cannot describe the clustering of thatoms, they also KgTrev =~
do not reflect the preference of the nucleation sites to be far
from the A clusters. The observed scaling exponentpf ForT<T,, the conditionE/D <1 is violated, so thati does
=(D/F)Y? does not match any of the exponents resultingnot depend orE/D and therefore increases with increasing
from the simulations. This is in general agreement with theeemperature. Fof > T,.,, however, Eq(45) applies. Accord-
analytical calculation of the exponents in Sec. V: There wang to Eq.(47) this means tha decreases again.
derived the scaling exponents from characteristic properties How robust are these results, if the simplifying assump-
of the A clusters, which are totally neglected in the presentedions made in this investigation are relaxed? Let us first dis-

S (48)
|n Vp — In Ve

rate equation approach. cuss the case that impurity atoms diffuse faster BBatoms
on the surface of thB film, D> Dg. As long asA-exchange

IX. CONCLUSION partners are available f@& adatoms, one should get nucle-
ation of islands consisting predominantly Afatoms as ex-

In the present work we have investigated heteroepitaxiaplained in Sec. Ill. After sufficient depletion of exchange

growth of B particles on am substrate. Introducing an ex- partners one will get secondary nucleation of essentially pure
change mechanism f@& adatoms, when they encounterA&n B islands on a smaller length scale. This should enhance the
atom in the uppermost layer, we observed that in the limit ofprobability for overgrowth so that we expect a larger expo-
layer-by-layer growth the top layer concentrationfodtoms  nent g in this case, perhaps as large as the mean field value,
decays algebraically liké". We obtained the exponerg B=1.

~0.8 ford=1 andg~0.5 ford=2, independent of the rate If Do<Dg, no such nucleation of secondary islands is
at whichA atoms andB atoms are exchanged. This is smaller expected. The islands nucleating at the beginning of a new
than the mean field exponept=1 obtained from rate equa- monolayer have a distance corresponding to the diffusion
tion analysis and in the limiD/F — < for fixed system size. |ength of theA adatoms. At the later stage of monolayer

For finite values ofD/F a crossover from power law to filling, when B adatoms no longer find exchange partners,
exponential decay was found. The crossover thhevhich  they attach to the already existing islands so that their diffu-
we identified with the width of the interdiffusion zoné&  sion length gets effectively reduced to the distance between
approximately proportional toD/F)%2® for d=1 and to the islands. Therefore, we expect that the cBse<Dg is
(D/F)%€ for d=2 and also increases witt/D. very similar to the cas®,=Dg studied in this paper.

An intriguing consequence of our findings is that we pre- If Ehrlich-Schwoebel barriers inhibit interlayer diffusion,
dict the possibility of a nonmonotonous temperature depena flat surface will be unstable with respect to three-
dence ofH: Whereas one expects that the interdiffusion zonedimensional mound formation. This instability predicted by
becomes wider with increasing temperature, it may actuallyillain [24] has been observed in many systei®5s]. How-
become narrower in certain cases. With the effective expoever, the weaker the Ehrlich-Schwoebel barrier is, the later
nents obtained for a two dimensional surface in Figs. 8 anthe instability sets in. One observes damped layer-by-layer
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growth oscillations up to a characteristic film thickndss the final position of theB adatom is an island edge, it is
which is an increasing function @/(F€§-8) [26], where¢,  bound there irreversibly possibly overgrowing anatom.
is the so-called Schwoebel length and is a measure for thEhen one returns to stefl) and deposits the ne atom.
strength of the Ehrlich-Schwoebel barrierst I$ larger than This algorithm can be generalized for finite=E/D: Not
the widthH of the interdiffusion zone calculated in this pa- always, when @& adatom encounters an exchange parfer
per without Ehrlich-Schwoebel barriers, the Villain instabil- they exchange immediately. This happens only with prob-
ity sets in too late to change the results we obtained. Thigbility pe=E/(E+2D), where the denominator is the sum of
was shown by recent simulations of the interdiffusion modelthe rates for the three possible actions of the adatom—
which included Ehrlich-Schwoebel barrigia7]. exchange with theA atom underneath, a hop to the right
These arguments show, that the impurity profile due to théeighbor and a hop to the left neighbor. With probabifty
partial surfactant behavior investigated in this paper shouldhe B adatom is replaced by ah adatom, which attaches to
be observable in real systems in spite of the simplifying asthe island edges to its left with probability EAL), and

sumptions we made. otherwise to the island edge to its right; f=is the prob-
ability that theB adatom continues to diffuse until it encoun-
ACKNOWLEDGMENTS ters the nex® atom or attaches to the island edge.

In order to avoid simulating the random walk explicitly,
The authors are very grateful to H. Hinrichsen, L. Bren-one has to calculate the probabilities analytically, thatBhe
del, V. Uzdin, U. Koehler, C. Wolf, and A. Lorke, with whom adatom exchanges with any particular of the@toms or at-
they had many fruitful discussions. This work was supportedaches to the island edges. Technically speakingBtiagom
by the DFG within Sonderforschungsbereich 484agnetic  is a random walker on a one-dimensional lattice with fixed
Heterolayersand GK 277(Strukture and Dynamics of Het- partial absorbergthe A atomg and two full absorbergthe
erogeneous Systemsas well as by the INTAS-Project No. island edges (Rosenstock trapping model with partial ab-
2001-0386. Work done by S.B.L. was supported in part bysorbery. In order to calculate the absorption probabilities at
Korea Research Foundation Grant NGKRF-2001-015- the different absorbers, which depend on the deposition site,
DP012Q. we consider an incoming flugnormalized to 1 of indepen-
dent random walkers at the deposition site(source and
APPENDIX determine the outgoing fluxes at the absorption gga¥ks.
) ) ) The absorption probability is then the steady state fraction of
Here we describe, how we implemented the model introye incoming flux that leaves the system at the respective
duced in Sec. Il for one-dimensional surfaces in the I'm'tabsorption site.

D/F—o. We first describe the idea for the scale free limit, The density of random walkers at a sitevolves accord-
where alscE/D — e,

For D/F—o one has perfect layer-by-layer growth. The ng to
nucleation of a new layer happens at an arbitrary position. p(x,t) =D[p(x = 1,t) = 2p(x,t) + p(x+ 1 ,1)]
Afterwards there is at most one adatom on the surface. The
idea is to calculate the probabilities exactly, with which the ~ Ep(X,)pa(X) + S (A2)

adatom reaches the nearest sinks to its left and to its right. _ . .
For anA adatom these are the island edges, while f@ a Where the density of partial absorbepg(x), is 1 at then
adatom it might also be aA atom, with which it could Sit€SXa,, Where anA atom sits, and O otherwise
exchange. Letl, (dg) denote the distance to the nearest sink n
to the left(right). -

As shown in Ref[28], the probabilityp, to reach the left PaX) El Bt (A3)
position prior to the right one with unbiased diffusion is
given by The terms on the right of EqA2) which are proportional to

D are the gain and loss terms due to hopping from a neighbor

— dr ' (A1) site tox, respectively, away from. The term proportional to

dg+d. the exchange raté describes the loss of walkers at the par-

Correspondinalvoe=1-p. . Therefore. it is not necessary to tial absorption sites. The last term is the gain term due to the
P g'yPr=~—PL- ’ Y10 hormalized influx of walkers at sites, The perfect sinks

simulate the whole random walk of an adatom, but it suffices . .
to select the final position according to H&1). corresponding to the island edges are represented by the

Thus, in the scale free limit the modglfter nucleation of ?;t’;g;%g?ﬁigﬁ Tﬁélézﬁ r(é_e)Tsf)lgll:gferzL Is the size of the
a new layey may be simulated as follows: ' h : o .
" . The probability of absorption at site, is then obtained
(1) Deposition of aB at a randomly chosen site from the steady state solution of EGh2) b
(2) Determination of the distancels anddg followed by y y
Eqd?;lil)on for a side according to the probabilities given in p(Xa) = Ep(X), (A4)
(3) If the final position of theB adatom is arA site, the  and the ones at the island edges by
atoms exchange¢as E/D — ). In this case theA adatom
goes to the left or right island edge according to &f). If p(1)=Dp(2), p(L)=Dp(L-1). (A5)

PL
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Introducing the diffusion current betwearandx+1 (i.e., The solution determines the probabilities E¢&4) and
the current to the right ok and to the left ofx+1): (A5) with which a freshly depositeB atom is exchanged at
. . _ the differentA sites or absorbed by the island edges. By
JRX) =jix+ 1) ==Dlp(x+1) = p(x)], (AB) choosing a random number we decide which site to pick. If it
Eq. (A2) can be rewritten in the steady state as is an island edge, thB atom is moved there, and the ndxt
atom is deposited at a random position. Otherwise, we move
the B atom to the chosen site, exchange it with fhatom
there, let another random number determine, whether to at-
tach theA atom to the left or right island boundary, and
This shows thap(x) is a piecewise linear function with slope deposit the nexB atom at a random position.
discontinuities at the source and the sinks. Hence,(&B) The complexity of this algorithm is linear in the number
reduces to a set ofr+2 coupled linear equations for the of A atoms left on the surface, while a brute force simulation
2n+2 unknownsjr(Xa,),p(Xa,) and the boundary values of the diffusion would cost much more computing time pro-
jr(1) andj (L). portional toL2.

JRO) =L ==Ep(0 X Sy + Snee (A7)
v=1
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