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We investigate the growth of a film of some elementB on a substrate made of another substanceA in a
model of molecular beam epitaxy. A vertical exchange mechanism(partial surfactant behavior) allows theA
atoms to stay on the growing surface with a certain probability. Using kinetic Monte Carlo simulations as well
as scaling arguments, the incorporation of theA’s into the growingB layer is investigated. Moreover, we
develop a rate equation theory for this process. The concentration ofA impurities decays in theB-film like
sdistance from the interfaced−1−b, whereb<0.5 for two-dimensional surfaces,<0.8 in the one-dimensional
case, and 1 in mean-field approximation. The power law is cut off exponentially at a characteristic thickness of
the interdiffusion zone that depends on the rate of exchange of aB adatom with anA atom in the surface and
on the diffusion length. Under certain conditions the interdiffusion zone is predicted to become narrower, if the
growth temperature is increased.
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I. INTRODUCTION

Heterolayers, where, e.g., ferromagnets are in contact
with antiferromagnets, semiconductors or superconductors,
give rise to ordering and transport phenomena, which depend
crucially on the interfacial structure. Examples for such or-
dering phenomena are the exchange bias[1], or the crypto-
magnetism[2]. Electronic transport through a ferromagnetic-
nonmagnetic-ferromagnetic sandwich(“spin valve”
geometry) gives rise to the giant magnetoresistance[3,4].
Another example is the recently predicted possibility to en-
hance or reduce a Josephson current magnetically by replac-
ing the tunnel barrier of a Josephson junction by a
ferromagnetic-insulating-ferromagnetic sandwich[5]. These
phenomena belong to the growing field of spintronics[6],
where the spin degree of freedom is used for electronic sig-
nal processing. Interfacial mixing affects all of them[7]. For
example, it leads to spin scattering disturbing the spin depen-
dent transport properties.

Therefore, it is important to be able to control the various
physical processes that may spoil sharp interfaces. Some of
them proceed after growth such as bulk interdiffusion or
chemical interface reactions like silicide formation. How-
ever, diffuse interfaces may also be caused by processes tak-
ing place exclusively at the surface: For example, the sub-
strate may partially behave like a surfactant when one grows
a different material on it. It is this latter mechanism which
we investigate in this paper. The questions we want to an-
swer concern the asymptotic concentration profile, the width
of the interdiffusion zone and possible correlations among
the substrate impurities within the growing layer.

Specifically we consider growing some materialB on a
substrateA. Obviously interfacial mixing requires that some
substratesAd atoms get replaced byB atoms and “float up”
on the surface until they get incorporated into the growing
film. Often the rate for the reverse process is so small that it
can be neglected. Such a behavior occurs, e.g., for Cr on Fe
[8], AlAs on GaAs[9], Nb on Fe[10], and Au on Fe[11].

This surfactant-like behavior depends on the interaction
between the different atoms including magnetic contributions
and lattice mismatch. In particular the explanation of any
ordering ofA and B atoms close to the interface would re-
quire a detailed investigation of these interactions[12]. The
situation becomes considerably simpler, however, if one is
interested in the physical properties further away from the
interface. Then the concentration ofA atoms may be re-
garded as sufficiently low that their interaction as well asA
-B ordering become unimportant. The focus on this region
justifies our simplified model in which the surfactant-like
behavior ofA atoms is described by a constant rateE with
which aB adatom exchanges irreversibly with anA atom in
the crystal layer below. This means thatB atoms are more
strongly bound in aB environment thanA atoms, which get
expelled onto the free surface if aB atom is available to take
their place.

Apart from the exchange there is a second crucial ingre-
dient in the model: TheA atoms behave onlypartially as a
surfactant in the sense that they can be overgrown by island
edges. By contrast a perfect surfactant atom should float up
also in front of an advancing island edge.

Further phenomenological parameters characterizing the
model are the deposition rateF of B atoms and the diffusion
constantsDA andDB of the adatoms of typeA or B, respec-
tively. The limit E/DB→`, where aB adatom exchanges
with the firstA atom it encounters, would be realized if theB
adatoms diffuse by an exchange mechanism[13] while theA
adatoms diffuse by hopping.

In the present paper we make two assumptions which are
generally not fulfilled and can affect the physical behavior
substantially. What will change if these model restrictions
are relaxed, will be discussed in Sec. IX. The first simplifi-
cation is that both kinds of atoms diffuse equally fast on the
surface,DA=DB=D, with a diffusion constant independent
of the surface composition. The second simplification is that
Ehrlich-Schwoebel barriers are not taken into account: Dif-
fusion on a terrace and across a terrace edge are described by
the same diffusion constantD. This turns out to be justified
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for weak enough Ehrlich-Schwoebel barriers. We make these
assumptions because we want the nucleation of islands on
the surface to be goverened by a single diffusion length.
Crossover phenomena to be expected if there are other com-
peting length scales would make a quantitative investigation
of interfacial mixing much more difficult so that it is legiti-
mate to consider this limiting case first.

Naively one would expect an exponential decay of the
density profile ofA atoms far from the interface. It is the
main result of this investigation that this is not always the
case: The incorporation ofA atoms is much slower, giving
rise to a power law decay of the concentration profile in the
limit of perfect layer-by-layer growth,D /F→`. In this case
the width of the interdiffusion zone diverges, provided there
are no finite size effects. By contrast we shall show that for
finite D /F the width of the interdiffusion zone is no longer
infinite, but a power law ofD /F.

This paper is organized as follows. In the next section we
are going to define a simple solid-on-solid(SOS) model for
epitaxial growth of aB layer on anA substrate, which allows
for the irreversible exchange ofB atoms withA’s at the sur-
face. In this model theA atoms on the surface turn out to
cluster in a time-periodic self-organized way, which is ex-
plained in Sec. III. The next three sections, Secs. IV–VI, are
devoted to the limit of perfect layer-by-layer growth,D /F
→`. First, in Sec. IV, we present a simple mean field argu-
ment leading to the prediction, that the concentration ofA’s
decays algebraically in theB layer. For a finite system size
this power law is cut off leading to a finite widthH of the
interdiffusion zone, which is discussed in Sec. V, where also
a scaling ansatz for the surface concentrationcA is proposed.
This scaling ansatz is confirmed by simulation results for
one- and two-dimensional surfaces in Sec. VI. The remaining
sections deal with interdiffusion for finiteD /F. Section VII
contains simulation results and scaling arguments, and in
Sec. VIII a rate equation theory is developed for the interdif-
fusion problem. Possible refinements of our model are dis-
cussed in the conclusion, Sec. IX. In the Appendix we de-
scribe a very efficient implementation of the simulation
model for one-dimensional surfaces in the limitD /F→`.

II. THE MODEL

In order to study interfacial mixing in heteroepitaxial
growth of aB layer on anA substrate we introduce a simple
SOS model defined on a simple cubic lattice by the follow-
ing kinetic rules(cf. Fig. 1).

(1) Starting from an initially flat substrate consisting ofA
atoms,B atoms are deposited at randomly selected sites on
the surface with deposition rateF.

(2) As long as they do not have a lateral neighbor, theB
atoms diffuse on the surface with diffusion constantD.

(3) When such aB atom happens to sit on top of anA
atom, it can exchange vertically with rateE or continue to
diffuse with rateD.

(4) After an exchange, theB atom stays irreversibly
bound, whereas theA atom diffuses on the surface with dif-
fusion constantD.

(5) There isno back exchange, when anA atom sits on
top of aB atom.

(6) When two adatoms, regardless of their type, meet,
they form a stable immobile nucleation center of an island.

(7) When an adatom, regardless of its type, reaches a site
adjacent to an island, it is irreversibly bound, increasing the
size of the island.

(8) Both types of particles can diffuse down across ter-
race edges without being hindered by an Ehrlich-Schwoebel
barrier.

(9) There are no overhangs, i.e., we assume SOS growth.
(10) The exchange of aB atom, with anA atom under-

neath is forbidden, if theB-atom is already part of an island,
i.e., if it has a nearest neighbor at the same height. Hence,A
atoms can be overgrown by island edges.

Rules (4)–(7) violate detailed balance. Irreversible bind-
ing and the absence of reincorporation of an expelledA atom
into theB surface underneath are justified, if the dissociation
and reincorporation rates are so small that these processes
hardly ever happen within the layer completion time,tF
=1/Fa2. This is the time, during which the film grows by
one monolayer. The dynamics of buried atoms is usually
much slower than that of surface atoms and is not considered
here. In this sense, the system never approaches thermal
equilibrium, as long as the deposition rateFa2 is large
enough compared to the rates we neglect.

Measuring time in units of the monolayer completion time
tF one can identify the average film thickness(the B dose in
monolayers) with the deposition time. Choosing in addition
the lattice constanta as length unit, this model is controlled
by the two dimensionless parametersD /Fa4 and rE
;a2E/D. (In the following we seta=1.)

This model will be investigated for one- and two-
dimensional(d=1 andd=2) surfaces in the following. Note
that it reduces to the usual model for molecular beam epitaxy
growth (for a recent review see, e.g., Ref.[14]), if one does
not distinguish the two particle types. Therefore, theD /F
dependence of quantities like island density, adatom density,
surface roughness, etc., are the same as usual. For general
values ofD /F andE/D we use kinetic Monte Carlo simula-
tions [15,16] in order to investigate the model. However, for
one-dimensional surfaces in the limitD /F→` we imple-
mented a much more efficient algorithm, which is described
in the Appendix.

III. CORRELATIONS OF THE A ATOMS

One of the most intriguing qualitative properties of this
model is the time-periodic self-organization ofA clusters on

FIG. 1. The growth model.B atoms are deposited with a depo-
sition rateF onto the substrate. Adatoms diffuse on the surface and
down to the binding site at an island edge with diffusion constantD
irrespective of their type. In the top layer mobileB’s can exchange
with A’s with an effective exchange rateE.
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the growing surface with a period of one monolayer. Figure 2
shows that theA atoms(black) are first clustered around the
nucleation sites of a new layer, but migrate towards the holes
remaining in that layer, when the islands coalesce. Thus, the
characteristic distance between these clusters agrees with the
typical distance between the nucleation sites, the diffusion
length [17]:

,D , sD/Fdg, s1d

as long as layer-by-layer growth persits. This can be verified
by examining the lateral correlations ofA atoms on the sur-
face after deposition oft monolayers

gsr,td =
1

Ldo
x=1

Ld

nAsx,tdnAsx + r,td − cAstd2, s2d

wherenAsxd=1 if there is anA atom at surface sitex, and
nAsxd=0 if there is none.cAstd denotes the surface density of
A atoms. A data collapse of these correlation functions for
different values ofD /F is obtained, if the space coordinates
are rescaled by,D (see Fig. 3 ford=1), which shows that
this is the characteristic distance between theA clusters.

The mechanism of the periodic self organization can most
clearly be seen in the limitrE=E/D→`, where everyB
adatom exchanges with the first exchange partnerA it en-
counters. When layert is completed and layert+1 begins to
grow, the firstB atoms deposited are likely to exchange with
A atoms from layert. Hence, the nuclei of islands in the new
layer t+1 will consist predominantly ofA atoms. As growth
proceeds, the lower terrace(layer t) gets depleted from ex-
change partnersA, either because they are exchanged with
freshly depositedB adatoms or get overgrown by the islands.
Then the core of the islands with a high concentration ofA
atoms gets surrounded by mainlyB atoms[Fig. 2(a)]. How-
ever, as the island size increases, it becomes more and more
likely that B atoms are deposited on top of the islands, i.e., in
layer t+2. TheseB adatoms find many exchange partners at
the core of the islands, which then become “washed out” and
start decorating the island edges, because there are no
Ehrlich-Schwoebel barriers in our model. Note that this edge
decoration with A atoms happenswithout lateral exchangeof
B with A atoms at the edges of the islands, in contrast to the
situation studied in Ref.[18]. As a result, the interior of the
islands gets cleared fromA atoms, which are collected in the
holes of layert+1 which get filled last[Fig. 2(b)]. Then the
process starts again: Layert+2 nucleates predominantly with
A atoms which were exchanged from layert+1.

For finite rE the mechanism is similar. However, for vici-
nal surfaces growing in step flow mode, the correlations
among theA atoms are different. Here, the terraces get

FIG. 2. Top view on the surface structure att=3.3 ML (a) and
t=4.0 ML (b). A atoms are black,B atoms are height encoded,
where brighter means higher.D /F=107, E/D=103, L2=1003100.

FIG. 3. LateralA-A correlation functionsgsr ,td at t=1 for dif-
ferentD /F sd=1d. The average distance betweenA clusters scales
with D /F like the distance of the nucleation sites, Eq.(1), where
g=1/4 for d=1.
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cleared ofA atoms, which attach to the step edges. This
decoration of advancing edges leads to a correlation pattern
gsr ,td with a spatial periodicity identical to the width of the
terraces.

The clustering ofA atoms on the surface leads to correla-
tions among theA atoms which get overgrown and hence
incorporated as impurities into theB film. For vicinal sur-
faces growing in step flow mode these correlations are much
weaker than for layer-by-layer growth on singular surfaces.

IV. THE SCALE FREE LIMIT

The limit of perfect layer-by-layer growth,D /F→`, is
particularly instructive. In this case, there is only one island
on the surface, nucleating at a random site. Afterwards at
most one adatom can be found on the surface at a time. If we
assume maximal exchange in addition, i.e., an exchange rate
E much larger than bothD andF, rE=E/D→`, the model
becomes parameter-free.A atoms can be buried even in this
limit, when they are overgrown by an island edge. However,
the lastA atom will never get buried in this case. The nucleus
of a new layer will always contain at least one of the remain-
ing surface atoms of typeA in the limit we focus on, because
the first B atom deposited after completion of a layer ex-
changes with anA atom before the nextB atom gets depos-
ited: cAst→`d=L−d. As this case is scale free, we expect that
the concentration ofA atoms falls off like a power law into
the growingB film.

In order to get a first idea about the distribution ofA
atoms in the growingB film, it suffices to consider the con-
centrationcAstd of A atoms at the surface after the deposition
of integer numbers tof monolayers. During the growth of the
next layer, a certain fractions1−qdP f0,1d of theseA atoms
is transported to the next layer via vertical exchange

cAst + 1d = s1 − qdcAstd. s3d

If q was constant, this would imply an exponential decay
cAstd~ s1−qdt. In the present model, however, the probability
q that anA atom gets overgrown decreases with decreasing
cAstd, resulting in a decay which is slower than exponential.

Qualitatively this can be understood in the following way:
In the limit D /F→` there is only one island on the surface.
Moreover, anyA atom on the lower terrace gets transferred
to the new layer as soon as it is reached by an adatom of type
B, becauserE→` is assumed, as well. OnlyA atoms suffi-
ciently close to the island have a chance to be overgrown by
the island edge before being visited by aB atom.

The island edge advances a characteristic distance,cover,
while the lower terrace gets depleted fromA atoms by ex-
change with adatoms of typeB. For a one-dimensional sur-
face of lengthL it is clear that,cover is proportional to the
number ofA atoms at the surface,cAstdL. Hence, the number
of A atoms with a chance to be overgrown is of the order of

,covercAstd ~ cAstd2L. s4d

This must be compared withqcAstdL, which shows that

q ~ cAstd. s5d

Inserting Eq.(5) into Eq.(3) leads to the difference equa-
tion

cAst + 1d − cAstd ~ − cAstd2 s6d

implying the asymptotic power law

cAstd , 1/t s7d

for the concentration ofA atoms at the surface.
At time t the concentration ofA atomsnot transported

further into layert+1 is cAstd−cAst+1d. This is the concen-
tration of A impurities incorporated into theB film at a dis-
tancez=at/ tF from the substrate. As explained earlier we
take a and tF as units of length and time so thatz can be
identified witht. Hence, the concentration profile of impurity
atoms inside the grown film is given by

− cA8std = cAstd − cAst + 1d , 1/t2. s8d

This implies that the average distance of impurity atoms
from the substrate diverges logarithmically with the thick-
nesstmax of the film

kzl = − o
t=1

tmax−1

cA8stdt + cAstmaxdtmax, ln tmax. s9d

Nevertheless, the interface can be localized precisely, be-
causeB atoms do not occur below layert=0 due to the
absence of bulk diffusion in this model. Later we show that
these power laws are confirmed by simulations.

The argument leading to Eq.(5) ignores that theA atoms
at the surface are clustered, as shown in Fig. 2, and was
made plausible only for a one-dimensional surface. However,
it can be refined such that it takes these spacial correlations
into account and applies also for two-dimensional surfaces.
For D /F→`, we can imagine that there is only one cluster
of sizecAstdLd on the surface, when the new layer nucleates.
The important point is that the nucleation happens anywhere
on the surface with equal probability 1/Ld in this case. How-
ever, only if the nucleation site is within an area of about the
size 2dcAstdLd centered at the middle of the cluster, there is a
chance that someA atoms get overgrown. In other words,
only a fraction of nucleation sites~cAstd leads to over-
growth. The average number ofA atoms overgrown in such a
case is proportional to the cluster size. Hence, on average a
fraction q of A atoms is overgrown which is proportional to
the fraction of nucleation sites leading to overgrowth, i.e.,
this refined argument givesq~cAstd as in Eq.(5).

V. THE WIDTH OF THE INTERDIFFUSION ZONE
FOR D /F\`

In the previous section we predicted that the mean dis-
tance of impurity atoms from the substrate diverges in the
scale free limit, whereD /F→` and rE→`. In this section
we show that for finiterE the power law Eq.(7) is only valid,
if the system is infinitely large. For finite system size the
power law is exponentially cut off at a characteristic distance
H from the substrate. Above this height the remaining impu-
rity atoms die out quickly by being incorporated into the

BIERWALD et al. PHYSICAL REVIEW E 70, 021604(2004)

021604-4



growing B film. Therefore, one can callH the width of the
interdiffusion zone. It could be defined as the limitn→` of

kznl1/n = F− o
t=1

`

cA8stdtnG1/n

, H1−1/n. s10d

The average distance of impurity atoms from the substrate is
given by kzl, ln H instead of Eq.(9).

Now we derive the size andrE dependence ofH. After the
completion of several monolayers on a substrate of linear
sizeL the number of substrate atoms at the surface iscALd.
TheA atoms are concentrated in a cluster, which we assume
to be compact, hence, of diameter~cA

1/dL. This assumption is
justified even ford=2, where the islands initially are fractal,
because theA cluster occupies the sites which were filledlast
in the uppermost monolayer. These sites do not form a frac-
tal.

Now we imagine the surface to be coarse grained on the
scale of the cluster diameter so that exactly one cell contains
the A cluster. The typical residence time of an adatom in
such a cell is

Dt =
scA

1/dLd2

D
. s11d

A B adatom which enters the cell containing theA cluster
will almost certainly be replaced by an exchange partnerA
within the residence time, if

EDt = rEscA
1/dLd2 @ 1 s12d

(exchange dominates). ForEDt!1 the adatom changes from
type B into type A only with probability EDt (overgrowth
dominates).

It is plausible to assume that the power law belongs to the
exchange dominated slow decay ofcA while the exponential
cut off indicates the much faster decay when overgrowth
dominates. Thus, the widthH of the interdiffusion zone
should be reached, whencA becomes so small that exchange
is no longer guaranteed, i.e., whenEDt drops below 1. In-
sertingcA<1/t=1/H into Eq. (12) one obtains

H < sÎrELdd. s13d

However, ascA cannot become smaller thanL−d, this esti-
mate is only valid forrE,1, while H<Ld for rE.1. This is
our prediction for the width of the interdiffusion zone in the
limit D /F→`. Note that in this limit the cut off of the power
law is a finite size effect: ForL→` the power law extends to
infinity.

Based on the results of this and the previous paragraph we
can conjecture the following scaling form for the surface
concentration ofA’s:

cAst,L;rEd − cAst → `d =
1

H
fS t

H
D , s14d

where according to Eq.(7):

fstd , 1/t for t ! 1. s15d

VI. NUMERICAL RESULTS FOR D /F\`

In order to check the predictions of Secs. IV and V, we
simulated the model described in Sec. II forD /F→` and
varied the values ofrE and system sizeL for one- and two-
dimensional surfaces. For the cased=1 we used the algo-
rithm described in the Appendix, while kinetic Monte-Carlo
simulations were done ford=2.

Figure 4(for d=1) and Figs. 5 and 6(for d=2) show the
concentrationcA of A atoms at the surface as a function of
deposition timet (in monolayers ofB atoms). All curves are
averages over 200–400 independent runs. Both ford=1 and
d=2 the exponent of the power law decay was found to be

FIG. 4. Scaling ofcAstd with L andE/D in d=1 for D /F→`.
Full symbols mark four curves forE/D=0.1 andL between 256
and 8192. Open symbols mark five curves forL=4096 andE/D
between 10−4 and 100. A data collapse of all nine curves is reached
by scaling in accordance with Eqs.(14) and (13). The data for
E/D=100 were rescaled differently: Here,cAL−1 is plotted vst /L,
as if E/D was 1 instead of 100. This shows, thatH becomes inde-
pendent ofE/D for E/D.1 as explained after Eq.(13). The dashed
line has slope −1 in agreement with Eq.(15).

FIG. 5. Scaling ofcAstd with rE=E/D in d=2 for D /F→`.
L2=2003200. Dashed line has slope −1 in agreement with Eq.
(15).
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consistent with the value −1 derived in Sec. IV.
As shown in Fig. 4, the predicted relations Eqs.(13) and

(14) lead to the expected data collapse for the one dimen-
sional surface. The results in two dimensions are not as clear.
In this case, we obtain the best data collapse with

H ~ L1.93 rE
1.2, s16d

as shown in the Figs. 5 and 6, whereas our predicted expo-
nents[2 and 1, respectively, see Eq.(13)] were about 4% and
20% different. In fact, theA clusters are not as compact as
assumed in the simple argument of Sec. V(see Fig. 2).

VII. SCALING FOR FINITE D /F

For finite D /F there are manyA clusters on the surface.
Their typical distance is given by the diffusion length,D as
shown in Sec. III. The average size of theA clusters iscA,D

d ,
provided this is much larger than 1. If the concentrationcA
becomes too small, less and lessA clusters will be found on
the surface, and their typical distance will grow. Finally allA
atoms will be overgrown, in contrast to the situation of per-
fect layer-by-layer growth, where the lastA atom could never
be overgrown. Apart from this, one might expect that the
results of the previous three sections would essentially re-
main true, if one replacesL by ,D. Qualitatively, the surface
concentrationcA indeed decays first approximately as a
power law of the deposition time, with a cutoff at a charac-
teristic widthH of the interdiffusion zone.

Quantitatively, however, the situation turns out to be more
complex than this: All exponents are different. The power
law decay

cA ~ t−b s17d

extends over at most two decades for the largest values of
D /F we simulated, so that the determination of the exponent
b from the slopes in the log-log plots of Fig. 7sd=1d and
Fig. 8 sd=2d is not very accurate. We estimate

b = H0.78 ± 0.08 for d = 1,

0.53 ± 0.05 for d = 2,
s18d

which are indicated by the dashed lines in the two figures.
Both exponents are significantly smaller thanb=1 obtained
for infinite D /F, i.e., cA decays more slowly for finite than
for infinite D /F.

This result is surprising on first sight, because there are
more island edges on the surface for finiteD /F, hence, more
possible places, whereA atoms may be overgrown. ThatcA
decays more slowly nevertheless, may be explained by the
fact, that the nucleation of islands does not happen anywhere
with equal probability as for infiniteD /F but preferentially
far away from the holes in the previous layer, where theA
atoms are concentrated. Therefore, overgrowth is less likely,
andcA decays more slowly than for infiniteD /F.

This raises the question, how big the parameterD /F must
be in order to see the exponentb=1 instead of the smaller
one. The answer is, that the system sizeL must be small
compared to,D in order to obtain the crossover to the faster
decay ofcA. This was confirmed by simulation results in Ref.

FIG. 6. Scaling ofcAstd with L in d=2 for D /F→`. E/D
=0.1. Dashed line has slope −1 in agreement with Eq.(15).

FIG. 7. Scaling ofcAstd with D /F in d=1. E/D=103, L=5
3103. . .104. The dashed line indicates the exponentb=0.78.

FIG. 8. Scaling ofcAstd with D /F in d=2. E/D=104, L2=500
3500. The dashed line indicates the exponentb=0.53.
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[19]. In the four figures belonging to this section we care-
fully checked that the system sizes were big enough to ex-
clude finite size effects.

Because the impurity concentration falls off more slowly
for finite D /F, Eq. (10) is replaced by

kznl1/n = F− o
t=1

`

cA8stdtnG1/n

, H1−b/n. s19d

The limit n→` can still be used as a definition of the width
H of the interdiffusion zone. The average distance of the
impurities from the substrate is now

kzl , H1−b. s20d

In analogy to Eq.(12) we expect that the power law decay
of cA~ t−b stops, when

rEscA,D
d d2/d < 1, s21d

or

cA,D
d < 1, s22d

whichever happens first. ReplacingcA by H−b, this implies
that the widthH of the interdiffusion zone should be given
by

H < ,D
d/b for rE @ 1 s23d

and

H < sÎrE,Ddd/b for rE ! 1. s24d

In analogy to Eq.(14) we postulate then that

cA =
1

HbgS t

H
D s25d

with

gstd , 1/tb for t ! 1, s26d

becausecA is independent ofH for small t.
We first checked these conjectures forrE.1, where the

surface concentration ofA’s becomes independent ofrE, as
expected. If we insert theD /F-dependence Eq.(1) of the
diffusion length in Eq.(23), Eq. (25) can be written in the
form

cASD

F
Dgd

= g1XtSD

F
D−gd/bC . s27d

With g=1/4 [20] for d=1 andg=1/s4+dfd<0.17 for d=2
(df is the fractal dimension of the islands) [21], and with the
b values determined earlier, the theory predicts

gd = H0.25 for d = 1

0.35 ± 0.01 for d = 2,
s28d

gd/b = H0.32 ± 0.03 for d = 1

0.66 ± 0.07 for d = 2.
s29d

The data collapses in Figs. 7 and 8 are in reasonable agree-
ment with this prediction.

However, therE-dependence Eq.(24) for rE,1 is not in
agreement with the simulation results. For fixedD /F the
theory Eq.(25) predicts

cArE
d/2 = g2st rE

−d/2bd. s30d

Inserting the value ofb determined earlier, the scaling expo-
nent should be

d/2b = H0.64 ± 0.06 for d = 1

1.9 ± 0.2 for d = 2.
s31d

For D /F=107 we could only check this for about one decade
of rE values: Ford=1 we found that already forrE=0.3 the
crossover into the regime, whereH becomes independent of
rE, affects the data. ForrE,10−3 the exchange was so weak
that the surface concentration ofA’s decayed very fast from
the beginning, so that a convincing data collapse was not
possible. Similar problems occurred ford=2. The best result
of our attempts to get a data collapse in the availablerE
interval are shown in Fig. 9 ford=1 and Fig. 10 ford=2.

FIG. 9. Scaling ofcAstd with E/D in d=1. D /F=107, L=5
3103.

FIG. 10. Scaling ofcAstd with E/D in d=2. D /F=107, L2

=5003500.
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The effective exponents turn out to be very different from the
ones predicted in Eq.(30).

VIII. RATE EQUATION APPROACH

In this section we extend the established rate equation
approach for submonolayer homoepitaxial growth as de-
scribed in Refs.[22] and [23], in order to apply it to our
model for surface interdiffusion. Our approach describes the
time evolution of four submonolayer quantities: The density
of mobile adatomsr, the total island densityI, the density of
mobile adatoms of typeB, rB, and the density of potential
exchange partners of typeA in the lower layer,rA. With
these quantities, the rate equations are as follows:

ṙ = F − DrsI + 2rd, s32d

İ = Dr2, s33d

ṙB = F − DrBsI + r + rBd − Ea2rArB, s34d

ṙA = − Ea2rArB − rAa2DrsI + 2rd. s35d

While the first two equations are identical to the well
known point-island model rate equations for homoepitaxial
growth, the last two are specific to our heteroepitaxial model.
The third one expresses the change in density of theB-type
adatoms. Its positive contribution describes the deposition of
new adatoms. The first negative term represents the loss ofB
adatoms, when they get incorporated into islands or bind to
another adatom to nucleate a new island. The extra termDrB

2

accounts for the fact that nucleation events involving twoB
adatoms count twice as much as those between aB and anA
adatom, because they remove twoB adatoms simultaneously.
The last term of Eq.(34) describes the exchange of mobile
B’s with A’s. Equation(35) expresses the annihilation of pos-
sible A-type exchange partners in the lower layer. Since this
value is monotonously decreasing, there is no positive con-
tribution. The negative terms describe the exchange ofA’s
with mobileB’s, and the overgrowth ofA’s due to propagat-
ing island edges and nucleation events.

Rescaling the variables(see Ref.[22]) according to t̂

= tF,0
2, r̂=r,0

2, Î = I,0
2, r̂A=rA,0

2, r̂B=rB,0
2, where ,0

=sD /Fd1/4, leads to the dimensionless equations

ṙ̂ = 1 − r̂sÎ + 2r̂d, s36d

Î
˙
= r̂2, s37d

ṙ̂B = 1 − r̂BsÎ + r̂ + r̂Bd − rEr̂Ar̂B, s38d

ṙ̂A = − rEr̂Ar̂B − sa/l0d2r̂Ar̂sÎ + 2r̂d. s39d

If we consider systems in perfect layer-by-layer growth
mode, this approach not only holds for the submonolayer
regime starting from the substrate, but also starting after in-
teger numbers of deposited monolayers. The initial condi-

tions of these equations for a flat surface aftern deposited
monolayers are

r̂s0d = Îs0d = r̂Bs0d = 0, r̂As0d = ĉAsnd. s40d

Disregarding the point island model nature of this ap-
proach, which only holds for early stages of the submono-
layer regime, we can establish the surface concentration of
A’s after the deposition of one additional monolayer,cAsn
+1d, as the integral over the density of all exchanged atoms

ĉAsn + 1d =E
0

s,0/ad2

dt̂ rEr̂Ar̂B. s41d

The upper integration boundary is the dimensionless time for
depositing one monolayer. This approximation can be justi-
fied by taking into account that the transport ofA atoms from
the nth to the sn+1dth layer mainly takes place at early
times, that is, the nucleation regime and early stages of the
intermediate coverage regime, as explained in Sec. III. The
chosen approach describes these regimes with sufficient ac-
curacy.

The solution of the first two equations can be taken di-
rectly from the literature[23]: For early times,t̂!1, r̂ is

linear in t̂, and Î increases witht̂3. At late times,t̂@1, one

getsr̂~ t̂−1/3 and Î ~ t̂1/3.
With these results, the last two equations can be solved

analytically in a similar way for the early-time regime,t̂
!1. For Eq.(38), the second term on the right hand side can
be neglected in this limit. If we also neglect the time depen-
dence ofr̂Astd< r̂As0d= ĉAsnd, we get

ṙ̂B < 1 − rEĉAr̂B. s42d

This equation relaxes into a steady state withr̂B,`

~1/srEĉAd after a characteristic timet̂* <1/frEĉAsndg. For
even smaller times,t̂! t̂* , we can also neglect the other right
hand side term, and we getr̂B~ t̂.

Plugging these results into Eq.(39), and realizing that the
second term on the right hand side can be neglected com-
pared to the first one, we get

r̂A ~ e−t̂/ĉA < S1 −
t̂

ĉA
D for t̂* ! t̂ ! 1 s43d

and

r̂A ~ e−rEt̂2 < s1 − rEt̂2d for t̂ ! t̂* . s44d

To relate these findings to our results in the other sections,
we employed an iteration scheme for the rate equation sys-
tem to obtain the surface concentration ofA’s for every de-
posited integer monolayer. Starting from the substrate
frAs0d=cAs0d=1g we can obtainrAs1d=cAs1d from Eq. (41)
by solving Eqs.(36)–(39) numerically. PluggingcAs1d back
into our rate equations as the initial surface concentration,
that is rAs0d=cAs1d, we getrAs1d=cAs2d by using Eq.(41)
again. Repeating this iteration scheme leads tocAstd.

The rescaled results of this approach for differentD /F are
shown in Fig. 11. One can clearly observe power law decay
for high D /F values at intermediate times, and a similar
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scaling behavior as obtained from the simulations. The ex-
ponent of the power law behavior is approximately −1,
which is identical to the result from the simulations for per-
fect layer-by-layer growth mode,D /F→`. This fact sup-
ports our argumentation concerning the different exponents
for D /F→` and finiteD /F in Sec. VII: Since the rate equa-
tions cannot describe the clustering of theA atoms, they also
do not reflect the preference of the nucleation sites to be far
from the A clusters. The observed scaling exponent ofl0

2

=sD /Fd1/2 does not match any of the exponents resulting
from the simulations. This is in general agreement with the
analytical calculation of the exponents in Sec. V: There we
derived the scaling exponents from characteristic properties
of theA clusters, which are totally neglected in the presented
rate equation approach.

IX. CONCLUSION

In the present work we have investigated heteroepitaxial
growth of B particles on anA substrate. Introducing an ex-
change mechanism forB adatoms, when they encounter anA
atom in the uppermost layer, we observed that in the limit of
layer-by-layer growth the top layer concentration ofA atoms
decays algebraically liket−b. We obtained the exponentb
<0.8 ford=1 andb<0.5 ford=2, independent of the rateE
at whichA atoms andB atoms are exchanged. This is smaller
than the mean field exponentb=1 obtained from rate equa-
tion analysis and in the limitD /F→` for fixed system size.

For finite values ofD /F a crossover from power law to
exponential decay was found. The crossover timeH (which
we identified with the width of the interdiffusion zone) is
approximately proportional tosD /Fd0.3 for d=1 and to
sD /Fd0.6 for d=2 and also increases withE/D.

An intriguing consequence of our findings is that we pre-
dict the possibility of a nonmonotonous temperature depen-
dence ofH: Whereas one expects that the interdiffusion zone
becomes wider with increasing temperature, it may actually
become narrower in certain cases. With the effective expo-
nents obtained for a two dimensional surface in Figs. 8 and

10 the width of the interdiffusion zone should be approxi-
mately proportional to

H ~ SE

D
D1.2SD

F
D0.6

, s45d

providedE/D,1. The exchange and diffusion rates should
follow Arrhenius laws with activation energiesEE and ED,
respectively, and attempt frequenciesnE and nD assumed to
be independent of temperature, i.e.:

E = nE expS−
EE

kBT
D, D = nD expS−

ED

kBT
D s46d

so that

H ~ S nE
2

nDF
expF−

2EE − ED

kBT
GD0.6

. s47d

The interesting case is that the activation energy for the ex-
change of aB adatom with anA atom underneath is smaller
than the activation energy for surface diffusion, 2EE,ED,
and at the same time the attempt frequency for exchange is
smaller than the one for diffusion, too. Then there is a rever-
sal temperatureTrev up to which the width of the interdiffu-
sion zone increases, and above which it becomes smaller
again.Trev is given by

kBTrev <
ED − EE

ln nD − ln nE
. s48d

For T,Trev the conditionE/D,1 is violated, so thatH does
not depend onE/D and therefore increases with increasing
temperature. ForT.Trev, however, Eq.(45) applies. Accord-
ing to Eq.(47) this means thatH decreases again.

How robust are these results, if the simplifying assump-
tions made in this investigation are relaxed? Let us first dis-
cuss the case that impurity atoms diffuse faster thanB atoms
on the surface of theB film, DA.DB. As long asA-exchange
partners are available forB adatoms, one should get nucle-
ation of islands consisting predominantly ofA atoms as ex-
plained in Sec. III. After sufficient depletion of exchange
partners one will get secondary nucleation of essentially pure
B islands on a smaller length scale. This should enhance the
probability for overgrowth so that we expect a larger expo-
nentb in this case, perhaps as large as the mean field value,
b=1.

If DA,DB, no such nucleation of secondary islands is
expected. The islands nucleating at the beginning of a new
monolayer have a distance corresponding to the diffusion
length of theA adatoms. At the later stage of monolayer
filling, when B adatoms no longer find exchange partners,
they attach to the already existing islands so that their diffu-
sion length gets effectively reduced to the distance between
the islands. Therefore, we expect that the caseDA,DB is
very similar to the caseDA=DB studied in this paper.

If Ehrlich-Schwoebel barriers inhibit interlayer diffusion,
a flat surface will be unstable with respect to three-
dimensional mound formation. This instability predicted by
Villain [24] has been observed in many systems[25]. How-
ever, the weaker the Ehrlich-Schwoebel barrier is, the later
the instability sets in. One observes damped layer-by-layer

FIG. 11. Scaled time dependence of the surface concentration of
substrate atoms, obtained from the iteration of the rate equations.
The slope of the power law region is −1.03±0.05.E/D=1.
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growth oscillations up to a characteristic film thicknesst̃
which is an increasing function ofD / sF,s

2.8d [26], where,s

is the so-called Schwoebel length and is a measure for the
strength of the Ehrlich-Schwoebel barriers. Ift̃ is larger than
the widthH of the interdiffusion zone calculated in this pa-
per without Ehrlich-Schwoebel barriers, the Villain instabil-
ity sets in too late to change the results we obtained. This
was shown by recent simulations of the interdiffusion model
which included Ehrlich-Schwoebel barriers[27].

These arguments show, that the impurity profile due to the
partial surfactant behavior investigated in this paper should
be observable in real systems in spite of the simplifying as-
sumptions we made.
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APPENDIX

Here we describe, how we implemented the model intro-
duced in Sec. II for one-dimensional surfaces in the limit
D /F→`. We first describe the idea for the scale free limit,
where alsoE/D→`.

For D /F→` one has perfect layer-by-layer growth. The
nucleation of a new layer happens at an arbitrary position.
Afterwards there is at most one adatom on the surface. The
idea is to calculate the probabilities exactly, with which the
adatom reaches the nearest sinks to its left and to its right.
For anA adatom these are the island edges, while for aB
adatom it might also be anA atom, with which it could
exchange. LetdL sdRd denote the distance to the nearest sink
to the left (right).

As shown in Ref.[28], the probabilitypL to reach the left
position prior to the right one with unbiased diffusion is
given by

pL =
dR

dR + dL
. sA1d

Correspondingly,pR=1−pL. Therefore, it is not necessary to
simulate the whole random walk of an adatom, but it suffices
to select the final position according to Eq.(A1).

Thus, in the scale free limit the model(after nucleation of
a new layer) may be simulated as follows:

(1) Deposition of aB at a randomly chosen sitei.
(2) Determination of the distancesdL anddR followed by

a decision for a side according to the probabilities given in
Eq. (A1).

(3) If the final position of theB adatom is anA site, the
atoms exchange(as E/D→`). In this case theA adatom
goes to the left or right island edge according to Eq.(A1). If

the final position of theB adatom is an island edge, it is
bound there irreversibly possibly overgrowing anA atom.
Then one returns to step(1) and deposits the nextB atom.

This algorithm can be generalized for finiterE=E/D: Not
always, when aB adatom encounters an exchange partnerA,
they exchange immediately. This happens only with prob-
ability pE=E/ sE+2Dd, where the denominator is the sum of
the rates for the three possible actions of the adatom—
exchange with theA atom underneath, a hop to the right
neighbor and a hop to the left neighbor. With probabilitypE
the B adatom is replaced by anA adatom, which attaches to
the island edges to its left with probability Eq.(A1), and
otherwise to the island edge to its right; 1−pE is the prob-
ability that theB adatom continues to diffuse until it encoun-
ters the nextA atom or attaches to the island edge.

In order to avoid simulating the random walk explicitly,
one has to calculate the probabilities analytically, that theB
adatom exchanges with any particular of theA atoms or at-
taches to the island edges. Technically speaking, theB atom
is a random walker on a one-dimensional lattice with fixed
partial absorbers(the A atoms) and two full absorbers(the
island edges) (Rosenstock trapping model with partial ab-
sorbers). In order to calculate the absorption probabilities at
the different absorbers, which depend on the deposition site,
we consider an incoming flux(normalized to 1) of indepen-
dent random walkers at the deposition sitexS (source) and
determine the outgoing fluxes at the absorption sites(sinks).
The absorption probability is then the steady state fraction of
the incoming flux that leaves the system at the respective
absorption site.

The density of random walkers at a sitex evolves accord-
ing to

ṙsx,td = Dfrsx − 1,td − 2rsx,td + rsx + 1,tdg

− Ersx,tdrAsxd + dx,xS
, sA2d

where the density of partial absorbers,rAsxd, is 1 at then
sitesxAn, where anA atom sits, and 0 otherwise

rAsxd = o
n=1

n

dx,xAn
. sA3d

The terms on the right of Eq.(A2) which are proportional to
D are the gain and loss terms due to hopping from a neighbor
site tox, respectively, away fromx. The term proportional to
the exchange rateE describes the loss of walkers at the par-
tial absorption sites. The last term is the gain term due to the
normalized influx of walkers at sitexS. The perfect sinks
corresponding to the island edges are represented by the
boundary conditionsrs1d=rsLd=0, whereL is the size of the
terrace, on which the source is located.

The probability of absorption at sitexA is then obtained
from the steady state solution of Eq.(A2) by

psxAd = ErsxAd, sA4d

and the ones at the island edges by

ps1d = Drs2d, psLd = DrsL − 1d. sA5d
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Introducing the diffusion current betweenx andx+1 (i.e.,
the current to the right ofx and to the left ofx+1):

jRsxd = jLsx + 1d = − Dfrsx + 1d − rsxdg, sA6d

Eq. (A2) can be rewritten in the steady state as

jRsxd − jLsxd = − Ersxdo
n=1

n

dx,xAn
+ dx,xS

. sA7d

This shows thatrsxd is a piecewise linear function with slope
discontinuities at the source and the sinks. Hence, Eq.(A2)
reduces to a set of 2n+2 coupled linear equations for the
2n+2 unknowns jRsxAnd ,rsxAnd and the boundary values
jRs1d and jLsLd.

The solution determines the probabilities Eqs.(A4) and
(A5) with which a freshly depositedB atom is exchanged at
the different A sites or absorbed by the island edges. By
choosing a random number we decide which site to pick. If it
is an island edge, theB atom is moved there, and the nextB
atom is deposited at a random position. Otherwise, we move
the B atom to the chosen site, exchange it with theA atom
there, let another random number determine, whether to at-
tach theA atom to the left or right island boundary, and
deposit the nextB atom at a random position.

The complexity of this algorithm is linear in the number
of A atoms left on the surface, while a brute force simulation
of the diffusion would cost much more computing time pro-
portional toL2.
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